
Argonne National Laboratory

Introduction toIntroduction to
ParallelParallel

ProgrammingProgramming

Part 2: Advanced ConceptsPart 2: Advanced Concepts

2

Jazz LCRC

Presentation PlanPresentation Plan

 Advanced MPI TopicsAdvanced MPI Topics
 Parallel I/OParallel I/O
 One sided communicationOne sided communication

 Brief introduction to PETSc library with aBrief introduction to PETSc library with a
CFD example run on thousands ofCFD example run on thousands of
processorsprocessors

3

Jazz LCRC

MPI-1MPI-1
 MPI is a message-passing library interface standard.MPI is a message-passing library interface standard.

 Specification, not implementationSpecification, not implementation
 Library, not a languageLibrary, not a language
 Classical message-passing programming modelClassical message-passing programming model

 MPI was defined (1994) by a broadly-based group ofMPI was defined (1994) by a broadly-based group of
parallel computer vendors, computer scientists, andparallel computer vendors, computer scientists, and
applications developers.applications developers.
 2-year intensive process2-year intensive process

 Implementations appeared quickly and now MPI isImplementations appeared quickly and now MPI is
taken for granted as vendor-supported software ontaken for granted as vendor-supported software on
any parallel machine.any parallel machine.

 Free, portable implementations exist for clustersFree, portable implementations exist for clusters
(MPICH, LAM, (MPICH, LAM, OpenMPIOpenMPI) and other environments) and other environments
(MPICH)(MPICH)

4

Jazz LCRC

MPI-2MPI-2
 Same process of definition by MPI ForumSame process of definition by MPI Forum
 MPI-2 is an extension of MPIMPI-2 is an extension of MPI

 Extends the message-passing Extends the message-passing modelmodel..
 Parallel I/OParallel I/O
 Remote memory operations (one-sided)Remote memory operations (one-sided)
 Dynamic process managementDynamic process management

 Adds other functionalityAdds other functionality
 C++ and Fortran 90 bindingsC++ and Fortran 90 bindings

 similar to original C and Fortran-77 bindingssimilar to original C and Fortran-77 bindings
 Language interoperabilityLanguage interoperability
 MPI interaction with threadsMPI interaction with threads

5

Jazz LCRC

MPI-2 Implementation StatusMPI-2 Implementation Status
 Most parallel computer vendors nowMost parallel computer vendors now

support MPI-2 on their machinessupport MPI-2 on their machines
 Except in some cases for the dynamicExcept in some cases for the dynamic

process management functions, whichprocess management functions, which
require interaction with other systemrequire interaction with other system
softwaresoftware

 Cluster Cluster MPIsMPIs, such as MPICH2 and, such as MPICH2 and
LAM, support most of MPI-2 includingLAM, support most of MPI-2 including
dynamic process managementdynamic process management

6

Jazz LCRC

Parallel I/OParallel I/O

7

Jazz LCRC

What does Parallel I/O Mean?What does Parallel I/O Mean?
 At the program level:At the program level:

 Concurrent reads or writes fromConcurrent reads or writes from
multiple processes to a multiple processes to a commoncommon filefile

 At the system level:At the system level:
 A parallel file system and hardwareA parallel file system and hardware

that support such concurrent accessthat support such concurrent access

8

Jazz LCRC

Why MPI is a Good SettingWhy MPI is a Good Setting
for Parallel I/Ofor Parallel I/O

 Writing is like sending and reading is likeWriting is like sending and reading is like
receiving.receiving.

 Any parallel I/O system will need:Any parallel I/O system will need:
 collective operationscollective operations
 user-defined datatypes to describe both memory anduser-defined datatypes to describe both memory and

file layoutfile layout
 communicators to separate application-level messagecommunicators to separate application-level message

passing from I/O-related message passingpassing from I/O-related message passing
 non-blocking operationsnon-blocking operations

 lots of MPI-like machinerylots of MPI-like machinery

9

Jazz LCRC

Collective I/O and MPICollective I/O and MPI
 A critical optimization in parallel I/OA critical optimization in parallel I/O
 All processes (in the communicator) must call the collective I/OAll processes (in the communicator) must call the collective I/O

functionfunction
 Allows communication of Allows communication of ““big picturebig picture”” to file system to file system

 Framework for I/O optimizations at the MPI-IO layerFramework for I/O optimizations at the MPI-IO layer
 Basic idea: build large blocks, so that reads/writes in I/O systemBasic idea: build large blocks, so that reads/writes in I/O system

will be largewill be large
 Requests from different processes may be merged togetherRequests from different processes may be merged together
 Particularly effective when the accesses of different processes areParticularly effective when the accesses of different processes are

noncontiguous and interleavednoncontiguous and interleaved

Small individual
requests

Large collective
access

10

Jazz LCRC

Collective I/O FunctionsCollective I/O Functions
 MPI_File_write_at_allMPI_File_write_at_all, etc., etc.

 _all_all indicates that all processes in the group specified indicates that all processes in the group specified
by the communicator passed to by the communicator passed to MPI_File_openMPI_File_open will will
call this functioncall this function

 _at_at indicates that the position in the file is specified as indicates that the position in the file is specified as
part of the call; this provides thread-safety and clearerpart of the call; this provides thread-safety and clearer
code than using a separate code than using a separate ““seekseek”” call call

 Each process specifies only its own accessEach process specifies only its own access
information information —— the argument list is the same as for the argument list is the same as for
the non-collective functionsthe non-collective functions

11

Jazz LCRC

The Other Collective I/O CallsThe Other Collective I/O Calls
 MPI_File_seekMPI_File_seek
 MPI_File_read_allMPI_File_read_all
 MPI_File_write_allMPI_File_write_all
 MPI_File_read_at_allMPI_File_read_at_all
 MPI_File_write_at_allMPI_File_write_at_all
 MPI_File_read_orderedMPI_File_read_ordered
 MPI_File_write_orderedMPI_File_write_ordered

combine seek and I/O
for thread safety

use shared file pointer

like Unix I/O

12

Jazz LCRC

Example: Distributed Array AccessExample: Distributed Array Access
P0

P12

P4

P8

P2

P14

P6

P10

P1

P13

P5

P9

P3

P15

P7

P11

P0 P1 P2 P3 P0 P1 P2

P4 P5 P6 P7 P4 P5 P6

P8 P9 P8 P9

Large array
distributed
among 16
processes

Access Pattern in the file

Each square represents
a subarray in the memory
of a single process

P10 P11 P10

P15P13P12 P12 P13 P14P14

13

Jazz LCRC

Level-0 AccessLevel-0 Access
 Each process makes one independent read request for eachEach process makes one independent read request for each

row in the local array (as in Unix)row in the local array (as in Unix)

call MPI_File_open(..., file, ...,call MPI_File_open(..., file, ...,fh,ierrfh,ierr))
do i=1, do i=1, n_local_rowsn_local_rows

call call MPI_File_seek(fhMPI_File_seek(fh, ..., , ..., ierrierr))
call call MPI_File_read(fhMPI_File_read(fh, a(i,0),...,, a(i,0),...,ierrierr))

enddoenddo
call call MPI_File_close(fhMPI_File_close(fh, , ierrierr))

14

Jazz LCRC

Level-1 AccessLevel-1 Access
 Similar to level 0, but each process uses collective I/O functionsSimilar to level 0, but each process uses collective I/O functions

 call MPI_File_open(MPI_COMM_WORLD, file,&call MPI_File_open(MPI_COMM_WORLD, file,&
 ..., ..., fhfh, , ierrierr))
do i=1,n_local_rowsdo i=1,n_local_rows

call call MPI_File_seek(fhMPI_File_seek(fh, ..., , ..., ierrierr))
call call MPI_File_read_all(fhMPI_File_read_all(fh, a(i,0), ...,&, a(i,0), ...,&

 ierrierr))
enddoenddo
call call MPI_File_close(fh,ierrMPI_File_close(fh,ierr))

15

Jazz LCRC

Level-2 AccessLevel-2 Access
 Each process creates a derived datatype to describe theEach process creates a derived datatype to describe the

noncontiguous access pattern, defines a file view, and callsnoncontiguous access pattern, defines a file view, and calls
independent I/O functionsindependent I/O functions

 call call MPI_Type_create_subarrayMPI_Type_create_subarray(..., &(..., &
 subarraysubarray, ..., , ..., ierrierr))

call call MPI_Type_commit(subarrayMPI_Type_commit(subarray, , ierrierr))
 call MPI_File_open(..., file,..., call MPI_File_open(..., file,..., fhfh, , ierrierr))
 call call MPI_File_set_view(fhMPI_File_set_view(fh, ..., , ..., subarraysubarray,&,&

 ..., ..., ierrierr))
call call MPI_File_read(fhMPI_File_read(fh, A, ..., , A, ..., ierrierr))
call call MPI_File_close(fhMPI_File_close(fh, , ierrierr))

16

Jazz LCRC

Level-3 AccessLevel-3 Access
 Similar to level 2, except that each process uses collective I/OSimilar to level 2, except that each process uses collective I/O

functionsfunctions

 call call MPI_Type_create_subarrayMPI_Type_create_subarray(..., &(..., &
 subarraysubarray, , ierrierr))
call call MPI_Type_commit(subarrayMPI_Type_commit(subarray, , ierrierr))

 call MPI_File_open(MPI_COMM_WORLD, file,& call MPI_File_open(MPI_COMM_WORLD, file,&
 ..., ..., fhfh, , ierrierr))

 call call MPI_File_set_view(fhMPI_File_set_view(fh, ..., , ..., subarraysubarray,&,&
..., ..., ierrierr))

call call MPI_File_read_all(fhMPI_File_read_all(fh, A, ..., , A, ..., ierrierr))
call call MPI_File_close(fh,ierrMPI_File_close(fh,ierr))

17

Jazz LCRC

The Four Levels of AccessThe Four Levels of Access
Fi

le
 S

pa
ce

Processes3210

Level 0

Level 1

Level 2

Level 3

18

Jazz LCRC

 Optimizations Optimizations
 Given complete access information, anGiven complete access information, an

implementation can perform optimizationsimplementation can perform optimizations
such as:such as:
 Data Sieving: Read large chunks and extract whatData Sieving: Read large chunks and extract what

is really neededis really needed
 Collective I/O: Merge requests of differentCollective I/O: Merge requests of different

processes into larger requestsprocesses into larger requests
 Improved prefetching and cachingImproved prefetching and caching

19

Jazz LCRC

Distributed Array Access: ReadDistributed Array Access: Read
BandwidthBandwidth

0

100

200

300

400

500

600

M
b

y
te

s
/s

e
c

HP

Exemplar

IBM SP Intel

Paragon

NEC SX4 SGI

Origin2000

Level 0/1
Level 2
Level 3

64 procs 64 procs 8 procs 32 procs256 procs

Array size: 512 x 512 x 512

20

Jazz LCRC

Distributed Array Access: WriteDistributed Array Access: Write
BandwidthBandwidth

64 procs 64 procs 8 procs 32 procs256 procs

0

50

100

150

200

250

300

350

400

450

M
b

y
te

s
/s

e
c

HP

Exemplar

IBM SP Intel

Paragon

NEC SX4 SGI

Origin2000

Level 0/1

Level 2

Level 3

Array size: 512 x 512 x 512

21

Jazz LCRC

Portable File FormatsPortable File Formats
 Ad-hoc file formatsAd-hoc file formats

 Difficult to collaborateDifficult to collaborate
 Cannot leverage post-processing toolsCannot leverage post-processing tools

 MPI provides external32 data encodingMPI provides external32 data encoding
 High level I/O librariesHigh level I/O libraries

 netCDF and HDF5netCDF and HDF5
 Better solutions than external32Better solutions than external32

 Define a Define a ““containercontainer”” for data for data
 Describes contentsDescribes contents
 May be queried (self-describing)May be queried (self-describing)

 Standard format for metadata about the fileStandard format for metadata about the file
 Wide range of post-processing tools availableWide range of post-processing tools available

22

Jazz LCRC

File Interoperability in MPI-IOFile Interoperability in MPI-IO
 Users can optionally create files with a portable binaryUsers can optionally create files with a portable binary

data representationdata representation
 ““datarepdatarep”” parameter to parameter to MPI_File_set_viewMPI_File_set_view
 nativenative -- default, same as in memory, not portabledefault, same as in memory, not portable
 external32external32 - a specific representation defined in- a specific representation defined in

MPI, (basically 32-bit big-endian IEEE format), portableMPI, (basically 32-bit big-endian IEEE format), portable
across machines and MPI implementationsacross machines and MPI implementations

 internalinternal –– implementation-defined representation implementation-defined representation
providing an implementation-defined level ofproviding an implementation-defined level of
portabilityportability
 Not used by anyone we know ofNot used by anyone we know of……

23

Jazz LCRC

Higher Level I/O LibrariesHigher Level I/O Libraries
 Scientific applications work with structuredScientific applications work with structured

data and desire more self-describing filedata and desire more self-describing file
formatsformats

 netCDF and HDF5 are two popular netCDF and HDF5 are two popular ““higherhigher
levellevel”” I/O libraries I/O libraries
 Abstract away details of file layoutAbstract away details of file layout
 Provide standard, portable file formatsProvide standard, portable file formats
 Include metadata describing contentsInclude metadata describing contents

 For parallel machines, these should be built onFor parallel machines, these should be built on
top of MPI-IOtop of MPI-IO
 HDF5 has an MPI-IO optionHDF5 has an MPI-IO option

 http://hdf.ncsa.uiuc.edu/HDF5/http://hdf.ncsa.uiuc.edu/HDF5/

24

Jazz LCRC

Parallel netCDF (PnetCDF)Parallel netCDF (PnetCDF)
 (Serial) netCDF(Serial) netCDF

 API for accessing multi-dimensionalAPI for accessing multi-dimensional
data setsdata sets

 Portable file formatPortable file format
 Popular in both fusion and climatePopular in both fusion and climate

communitiescommunities
 Parallel netCDFParallel netCDF

 Very similar API to netCDFVery similar API to netCDF
 Tuned for better performance in todayTuned for better performance in today’’ss

computing environmentscomputing environments
 Retains the file format so netCDF andRetains the file format so netCDF and

PnetCDF applications can share filesPnetCDF applications can share files
 PnetCDF builds on top of any MPI-IOPnetCDF builds on top of any MPI-IO

implementationimplementation

ROMIO

PnetCDF

PVFS2

Cluster

IBM MPI

PnetCDF

GPFS

IBM SP

25

Jazz LCRC

Exchanging Data with RMAExchanging Data with RMA

26

Jazz LCRC

Remote Memory Access in MPI-2Remote Memory Access in MPI-2
(also called One-Sided Operations)(also called One-Sided Operations)

 Goals of MPI-2 RMA DesignGoals of MPI-2 RMA Design
 Balancing efficiency and portability across aBalancing efficiency and portability across a

wide class of architectureswide class of architectures
 shared-memory multiprocessorsshared-memory multiprocessors
 NUMA architecturesNUMA architectures
 distributed-memory distributed-memory MPPMPP’’ss, clusters, clusters
 Workstation networksWorkstation networks

 Retaining Retaining ““look and feellook and feel”” of MPI-1 of MPI-1
 Dealing with subtle memory behavior issues:Dealing with subtle memory behavior issues:

cache coherence, sequential consistencycache coherence, sequential consistency

27

Jazz LCRC

Mesh CommunicationMesh Communication
 Recall how we designed the parallelRecall how we designed the parallel

implementationimplementation
 Determine source and destination dataDetermine source and destination data

 Do not need full generality of send/receiveDo not need full generality of send/receive
 Each process can completely define what data needs toEach process can completely define what data needs to

be moved to itself, relative to each processes local meshbe moved to itself, relative to each processes local mesh
 Each process can Each process can ““getget”” data from its neighbors data from its neighbors

 Alternately, each can define what data is needed by theAlternately, each can define what data is needed by the
neighbor processesneighbor processes
 Each process can Each process can ““putput”” data to its neighbors data to its neighbors

28

Jazz LCRC

Remote Memory AccessRemote Memory Access
 Separates data transfer from indication ofSeparates data transfer from indication of

completion (synchronization)completion (synchronization)
 In message-passing, they are combinedIn message-passing, they are combined

store
send receive

load

Proc 0 Proc 1 Proc 0 Proc 1

fence
put
fence

fence

fence
load

store
fence fence

get

or

29

Jazz LCRC

Remote Memory AccessRemote Memory Access
Windows and Window ObjectsWindows and Window Objects

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

30

Jazz LCRC

Basic RMA Functions forBasic RMA Functions for
CommunicationCommunication

 MPI_Win_createMPI_Win_create exposes local memory to RMA operation by exposes local memory to RMA operation by
other processes in a communicatorother processes in a communicator
 Collective operationCollective operation
 Creates window objectCreates window object

 MPI_Win_freeMPI_Win_free deallocatesdeallocates window object window object

 MPI_PutMPI_Put moves data from local memory to remote memory moves data from local memory to remote memory
 MPI_GeMPI_Get retrieves data from remote memory into local memoryt retrieves data from remote memory into local memory
 MPI_AccumulateMPI_Accumulate updates remote memory using local values updates remote memory using local values
 Data movement operations are non-blockingData movement operations are non-blocking
 Subsequent synchronization on window object needed toSubsequent synchronization on window object needed to

ensure operation is completeensure operation is complete

31

Jazz LCRC

Send vs. PutSend vs. Put

 MPI_PutMPI_Put can be can be
much faster thatmuch faster that
MPI Point-to-MPI Point-to-
pointpoint
 4 neighbor4 neighbor

exchange on SGIexchange on SGI
OriginOrigin

MPI Put

MPI_Isend

32

Jazz LCRC

Advantages of RMAAdvantages of RMA
OperationsOperations

 Can do multiple data transfers with aCan do multiple data transfers with a
single synchronization operationsingle synchronization operation

 Some irregular communication patternsSome irregular communication patterns
can be more economically expressedcan be more economically expressed

 Can be significantly faster thanCan be significantly faster than
send/receive on systems with hardwaresend/receive on systems with hardware
support for remote memory access, suchsupport for remote memory access, such
as shared memory systemsas shared memory systems

33

Jazz LCRC

Irregular CommunicationIrregular Communication
Patterns with RMAPatterns with RMA

 If communication pattern is not knownIf communication pattern is not known
a prioria priori, the send-, the send-recvrecv model requires an model requires an
extra step to determine how manyextra step to determine how many
sends-sends-recvsrecvs to issue to issue

 RMA, however, can handle it easilyRMA, however, can handle it easily
because only the origin or target processbecause only the origin or target process
needs to issue the put or get callneeds to issue the put or get call

 This makes dynamic communicationThis makes dynamic communication
easier to code in RMAeasier to code in RMA

34

Jazz LCRC

RMA Window ObjectsRMA Window Objects
MPI_Win_create(base, size, disp_unit,MPI_Win_create(base, size, disp_unit,
info,info,

 comm, win) comm, win)
 Exposes memory given by Exposes memory given by (base, size)(base, size) to to

RMA operations by other processes in RMA operations by other processes in commcomm
 winwin is window object used in RMA operations is window object used in RMA operations
 disp_unitdisp_unit scales displacements: scales displacements:

 1 (no scaling) or 1 (no scaling) or sizeof(type)sizeof(type), where window is, where window is
an array of elements of type an array of elements of type typetype

 Allows use of array indicesAllows use of array indices
 Allows heterogeneityAllows heterogeneity

35

Jazz LCRC

RMA Communication CallsRMA Communication Calls
 MPI_PutMPI_Put - stores into remote memory - stores into remote memory
 MPI_GetMPI_Get - reads from remote memory - reads from remote memory
 MPI_AccumulateMPI_Accumulate - updates remote memory - updates remote memory
 All are non-blocking: data transfer is described, maybeAll are non-blocking: data transfer is described, maybe

even initiated, but may continue after call returnseven initiated, but may continue after call returns
 Subsequent synchronization on window object isSubsequent synchronization on window object is

needed to ensure operations are completeneeded to ensure operations are complete

36

Jazz LCRC

The Synchronization IssueThe Synchronization Issue

 Issue: Which value is retrieved?Issue: Which value is retrieved?
 Some form of synchronization is requiredSome form of synchronization is required

between local load/stores and remotebetween local load/stores and remote
get/put/accumulatesget/put/accumulates

 MPI provides multiple formsMPI provides multiple forms

local
stores

MPI_Get

37

Jazz LCRC

Synchronization with FenceSynchronization with Fence

Simplest methods for synchronizing on window objects:Simplest methods for synchronizing on window objects:
 MPI_Win_fenceMPI_Win_fence - like barrier - like barrier

Process 0

MPI_Win_fence(win)

MPI_Put
MPI_Put

MPI_Win_fence(win)

Process 1

MPI_Win_fence(win)

MPI_Win_fence(win)

38

Jazz LCRC

PETScPETSc
Portable Extensible Toolkit forPortable Extensible Toolkit for

Scientific ComputingScientific Computing
 http://http://www.mcs.anl.gov/petscwww.mcs.anl.gov/petsc

39

Jazz LCRC

The Role of PETScThe Role of PETSc

 Developing parallel, non-trivial PDEDeveloping parallel, non-trivial PDE
solvers that deliver high performancesolvers that deliver high performance
is still difficult and requires months (oris still difficult and requires months (or
even years) of concentrated effort.even years) of concentrated effort.

 PETSc is a toolkit that can ease thesePETSc is a toolkit that can ease these
difficulties and reduce thedifficulties and reduce the
development time, but it is not a black-development time, but it is not a black-
box PDE solver nor a silver bullet.box PDE solver nor a silver bullet.

40

Jazz LCRC

Overview of PETScOverview of PETSc
((http://http://www.mcs.anl.gov/petscwww.mcs.anl.gov/petsc))

 Gives relatively high-level expression toGives relatively high-level expression to
preconditioned iterative linear solvers,preconditioned iterative linear solvers,
and Newton iterative methodsand Newton iterative methods

 Ports wherever MPI ports; committed toPorts wherever MPI ports; committed to
progressive MPI tuningprogressive MPI tuning

 Permits great flexibility (through object-Permits great flexibility (through object-
oriented philosophy) for algorithmicoriented philosophy) for algorithmic
innovationinnovation

 Callable from FORTRAN77, C, and C++Callable from FORTRAN77, C, and C++

41

Jazz LCRC

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers

ODE Integrators Visualization

Interface

Structure of PETScStructure of PETSc

PETSc Structure

42

Jazz LCRC

What is not in PETSc?What is not in PETSc?
 Higher level representations of PDEsHigher level representations of PDEs

 Unstructured mesh generation and manipulationUnstructured mesh generation and manipulation
 DiscretizationsDiscretizations

 Load balancingLoad balancing
 Sophisticated visualization capabilitiesSophisticated visualization capabilities
 Optimization and sensitivityOptimization and sensitivity

But PETSc does interface to external software that
provides some of this functionality.

PETSc Structure

43

Jazz LCRC

PETSc codeUser code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Flow of Control:Flow of Control:
User Code/PETSc LibraryUser Code/PETSc Library

44

Jazz LCRC

PETSc ObjectsPETSc Objects

 VectorsVectors
 Sequential and parallelSequential and parallel

 MatricesMatrices
 Sequential and parallelSequential and parallel

 Linear SolversLinear Solvers
 kspksp, preconditioners, preconditioners

 Nonlinear SolversNonlinear Solvers
 Time integrationTime integration

45

Jazz LCRC

VectorsVectors
 What are PETSc vectors?What are PETSc vectors?

 Fundamental objects for storing field solutions,Fundamental objects for storing field solutions,
right-hand sides, etc.right-hand sides, etc.

 Each process locally owns a Each process locally owns a subvectorsubvector of of
contiguously numbered global indicescontiguously numbered global indices

 Create vectors viaCreate vectors via
 VecCreate(MPI_Comm,VecVecCreate(MPI_Comm,Vec *) *)

 MPI_CommMPI_Comm - processes that share the vector - processes that share the vector
 VecSetSizesVecSetSizes((VecVec, , intint, , intint))

 number of elements local to this processnumber of elements local to this process
 or total number of elementsor total number of elements

 VecSetType(Vec,VecTypeVecSetType(Vec,VecType))
 Where Where VecTypeVecType is is

 VEC_SEQ, VEC_MPIVEC_SEQ, VEC_MPI, or , or VEC_SHAREDVEC_SHARED
 VecSetFromOptions(VecVecSetFromOptions(Vec) lets you set the type at) lets you set the type at

runtimeruntime

data
objects:
vectors

proc 3

proc 2

proc 0

proc 4

proc 1

46

Jazz LCRC

Global size

PETSc determines local size

Use PETSc to get value from
command line

47

Jazz LCRC

How Can We Use a PETScHow Can We Use a PETSc
VectorVector

 PETSc supports PETSc supports ““data structure-neutraldata structure-neutral”” objects objects
 distributed memory distributed memory ““shared nothingshared nothing”” model model
 single processors and shared memory systemssingle processors and shared memory systems

 PETSc vector is a PETSc vector is a ““handlehandle”” to the real vector to the real vector
 Allows the vector to be distributed across many processesAllows the vector to be distributed across many processes
 To access the To access the elementselements of the vector, we cannot simply do of the vector, we cannot simply do

 for (i=0; i<n; i++) v[i] = i;for (i=0; i<n; i++) v[i] = i;
 We do not We do not require require that the programmer work only with thethat the programmer work only with the

““locallocal”” part of the vector; we permit operations, such as setting part of the vector; we permit operations, such as setting
an element of a vector, to be performed globallyan element of a vector, to be performed globally

48

Jazz LCRC

Vector AssemblyVector Assembly
 A three step processA three step process

 Each process tells PETSc what values to set or add to a vectorEach process tells PETSc what values to set or add to a vector
component. Once component. Once allall values provided, values provided,

 Begin communication between processes to ensure that values endBegin communication between processes to ensure that values end
up where neededup where needed

 (allow other operations, such as some computation, to proceed)(allow other operations, such as some computation, to proceed)
 Complete the communicationComplete the communication

 VecSetValues(VecVecSetValues(Vec,,……))
 number of entries to insert/addnumber of entries to insert/add
 indices of entriesindices of entries
 values to addvalues to add
 mode: mode: [INSERT_VALUES,ADD_VALUES][INSERT_VALUES,ADD_VALUES]

 VecAssemblyBegin(VecVecAssemblyBegin(Vec))
 VecAssemblyEnd(VecVecAssemblyEnd(Vec))

49

Jazz LCRC

Selected Vector OperationsSelected Vector Operations

Function Name Operation

VecAXPY(Scalar *a, Vec x, Vec y)

y = y + a*x
VecAYPX(Scalar *a, Vec x, Vec y) y = x + a*y
VecWAXPY(Scalar *a, Vec x, Vec y, Vec w) w = a*x + y
VecScale(Scalar *a, Vec x) x = a*x
VecCopy(Vec x, Vec y) y = x
VecPointwiseMult(V ec x, Vec y, Vec w) w_i = x_i *y_i
VecMax(Vec x, int *idx, double *r) r = max x_i
VecShift(Scalar *s, Vec x) x_i = s+x_i
VecAbs(Vec x) x_i = |x_i |
VecNorm(Vec x, NormType type , double *r) r = ||x||

50

Jazz LCRC

A Complete PETSc ProgramA Complete PETSc Program

51

Jazz LCRC

MatricesMatrices
 What are PETSc matrices?What are PETSc matrices?

 Fundamental objects for storing linear operators (e.g., Fundamental objects for storing linear operators (e.g., JacobiansJacobians))
 Create matrices viaCreate matrices via

 MatCreateMatCreate((……,Mat *),Mat *)
 MPI_CommMPI_Comm - processes that share the matrix - processes that share the matrix
 number of locałglobal rows and columnsnumber of locałglobal rows and columns

 MatSetType(Mat,MatTypeMatSetType(Mat,MatType))
 where where MatTypeMatType is one of is one of

 default sparse AIJ: default sparse AIJ: MPIAIJ, SEQAIJMPIAIJ, SEQAIJ
 block sparse AIJ (for multi-component PDEs): block sparse AIJ (for multi-component PDEs): MPIAIJ, SEQAIJMPIAIJ, SEQAIJ
 symmetric block sparse AIJ: symmetric block sparse AIJ: MPISBAIJ, SAEQSBAIJMPISBAIJ, SAEQSBAIJ
 block diagonal: block diagonal: MPIBDIAG, SEQBDIAGMPIBDIAG, SEQBDIAG
 dense: dense: MPIDENSE, SEQDENSEMPIDENSE, SEQDENSE
 matrix-freematrix-free
 etc.etc.

 MatSetFromOptions(MatMatSetFromOptions(Mat) lets you set the) lets you set the MatTypeMatType at at runtimeruntime..

52

Jazz LCRC

Parallel Matrix DistributionParallel Matrix Distribution

MatGetOwnershipRange(MatMatGetOwnershipRange(Mat A, int * A, int *rstartrstart, int *rend), int *rend)
 rstartrstart:: first locally owned row of global matrix first locally owned row of global matrix
 rend -1: rend -1: last locally owned row of global matrixlast locally owned row of global matrix

Each process locally owns a submatrix of contiguously
numbered global rows.

proc 0

} proc 3: locally owned rowsproc 3
proc 2
proc 1

proc 4

53

Jazz LCRC

Matrix Assembly ExampleMatrix Assembly Example
With Parallel AssemblyWith Parallel Assembly

Mat A;
int column[3], i, start, end,istart,iend;
double value[3];
…

/* mesh interior */
istart = start; if (start == 0) istart = 1;
iend = end; if (iend == n-1) iend = n-2;
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
for (i=istart; i<iend; i++) {
 column[0] = i-1; column[1] = i; column[2] = i+1;
 MatSetValues(A,1,&i,3,column,value,INSERT_VALUES);
}
/* also must set boundary points (code for global row 0 and n-1 omitted) */
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

simple 3-point stencil for 1D discretization

Choose the global
Size of the matrix

Let PETSc decide how
to allocate matrix
across processes

54

Jazz LCRC

Linear SolversLinear Solvers

 KrylovKrylov Methods Methods
 Using PETSc linear algebra, just add:Using PETSc linear algebra, just add:

 KSPSetOperatorsKSPSetOperators(), (), KSPSetRhsKSPSetRhs(),(),
KSPSetSolutionKSPSetSolution()()

 KSPSolveKSPSolve()()
 Preconditioners must obey PETSc interfacePreconditioners must obey PETSc interface

 Basically just the KSP interfaceBasically just the KSP interface
 Can change solver dynamically from theCan change solver dynamically from the

command linecommand line

55

Jazz LCRC

Nonlinear SolversNonlinear Solvers
 Using PETSc linear algebra, just add:Using PETSc linear algebra, just add:

 SNESSetFunctionSNESSetFunction(), (), SNESSetJacobianSNESSetJacobian()()
 SNESSolveSNESSolve()()

 Can access Can access subobjectssubobjects
 SNESGetKSPSNESGetKSP()()
 KSPGetPCKSPGetPC()()

 Can customize Can customize subobjectssubobjects from the from the cmdcmd line line
 Could give Could give ––sub_pc_type sub_pc_type iluilu, which would set the, which would set the

subdomainsubdomain preconditioner to ILU preconditioner to ILU

Integration

56

Jazz LCRC

DebuggingDebugging

 -start_in_debugger [-start_in_debugger [gdb,dbx,noxtermgdb,dbx,noxterm]]
 -on_error_attach_debugger-on_error_attach_debugger

[[gb,dbx,noxtermgb,dbx,noxterm]]
 -on_error_abort-on_error_abort
 -debugger_nodes 0,1-debugger_nodes 0,1
 -display machinename:0.0-display machinename:0.0

Support for parallel debugging

When debugging, it is often useful to place
a breakpoint in the function PetscError().

debugging and errors

57

Jazz LCRC

Profiling and PerformanceProfiling and Performance
TuningTuning

 Integrated profiling using Integrated profiling using -log_summary-log_summary
 User-defined eventsUser-defined events
 Profiling by stages of an applicationProfiling by stages of an application

Profiling:

Performance Tuning:
 Matrix optimizationsMatrix optimizations
 Application optimizationsApplication optimizations
 Algorithmic tuningAlgorithmic tuning

58

Jazz LCRC

CFD Example: PETSc-FUN3DCFD Example: PETSc-FUN3D
 Based on Based on ““legacylegacy”” (but contemporary) NASA CFD (but contemporary) NASA CFD

application, with significant F77 code reuseapplication, with significant F77 code reuse
 Portable, message-passing library-based parallelization,Portable, message-passing library-based parallelization,

runs on NT boxes through Tflop/s ASCI platformsruns on NT boxes through Tflop/s ASCI platforms
 Simple multithreaded extension (for SMP Clusters)Simple multithreaded extension (for SMP Clusters)
 Sparse, unstructured data, implying memorySparse, unstructured data, implying memory

indirection with only modest reuseindirection with only modest reuse
 Wide applicability to other implicitly discretizedWide applicability to other implicitly discretized

multiple-scale PDE workloads multiple-scale PDE workloads —— of interagency, of interagency,
interdisciplinary interestinterdisciplinary interest

59

Jazz LCRC

Euler SimulationEuler Simulation
 3D transonic flow over ONERA3D transonic flow over ONERA

M6 wing, at 3.06º angle of attackM6 wing, at 3.06º angle of attack
(exhibits (exhibits λλ--shockshock at M = 0.839) at M = 0.839)

 SolveSolve
 where where

ρ = density, u = velocity, p =
pressure
E = energy density

0)ˆ(
1

=!"+
#

#
$
!

dnF
Vt

Q

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

=

E

w

v

u

Q

'

'

'

'

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

+

+

+

+

='

UpE

pnUw

pnUv

pnUu

U

nF

z

y

x

)(

ˆ

ˆ

ˆ

ˆ

(

(

(

(

wnvnunU zyx
ˆˆˆ ++=

()
!
"

#
$
%

& ++
''=

2
)1(

222
wvu

Ep ()

60

Jazz LCRC

PETSc-FUN3D Code PETSc-FUN3D Code ––
Parallelization ApproachParallelization Approach

 Follow the Follow the ““owner computesowner computes”” rule under the dual rule under the dual
constraints of minimizing the number of messagesconstraints of minimizing the number of messages
and overlapping communication with computationand overlapping communication with computation

 Each processor Each processor ““ghostsghosts”” its stencil dependences in its stencil dependences in
its neighborsits neighbors

 Ghost nodes ordered after contiguous owned nodesGhost nodes ordered after contiguous owned nodes
 Domain mapped from (user) global ordering intoDomain mapped from (user) global ordering into

local orderingslocal orderings
 Scatter/gather operations created between Scatter/gather operations created between locallocal

sequentialsequential vectors and vectors and global distributedglobal distributed vectors, vectors,
based on runtime connectivity patternsbased on runtime connectivity patterns

61

Jazz LCRC

Different OrderingsDifferent Orderings

1 2

3 4

5 6

7 8

9

10

11

12

Local Ordering on Processor 2

1 2

3 4

5 6

7 8

9

10

11

12

Local Ordering on Processor 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Application Ordering

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

PETSc Ordering

62

Jazz LCRC

 Solving Unstructured MeshSolving Unstructured Mesh
Problems in SerialProblems in Serial

 makes them more makes them more memory intensivememory intensive
 reduces the reduces the locality in data referencelocality in data reference

patterns (which is required to get goodpatterns (which is required to get good
cache performance)cache performance)

 needs high needs high memory bandwidthmemory bandwidth since since
cache lines might be loaded multiple timescache lines might be loaded multiple times

 requires lot of requires lot of integer operationsinteger operations that that
make these solvers more susceptible tomake these solvers more susceptible to
run into run into operation issueoperation issue limitations limitations

63

Jazz LCRC

Solving Unstructured GridSolving Unstructured Grid
Problems in Parallel:Problems in Parallel:

Main IssuesMain Issues
 SPMD parallelization of unstructuredSPMD parallelization of unstructured

grid solvers is complicated by the fact thatgrid solvers is complicated by the fact that
no two interprocessor data dependencyno two interprocessor data dependency
patterns are alikepatterns are alike

 The user-provided global ordering mayThe user-provided global ordering may
be incompatible with the subdomain-be incompatible with the subdomain-
contiguous ordering required for highcontiguous ordering required for high
performance and convenient SPMDperformance and convenient SPMD
codingcoding

64

Jazz LCRC

Time-Implicit Newton-Time-Implicit Newton-KrylovKrylov-Schwarz (-Schwarz (ΨΨNKS)NKS)
For nonlinear robustness, NKS iteration is wrapped in time-steppingFor nonlinear robustness, NKS iteration is wrapped in time-stepping

for (l = 0; l < n_time; l++) {for (l = 0; l < n_time; l++) { # n_time ~ 50# n_time ~ 50
select time stepselect time step
for (k = 0; k < n_Newton; k++) {for (k = 0; k < n_Newton; k++) { # n_Newton ~ 1# n_Newton ~ 1
 compute nonlinear residual and Jacobian compute nonlinear residual and Jacobian

 for (j = 0; j < n_Krylov; j++) { for (j = 0; j < n_Krylov; j++) { # n_Krylov ~ 60 # n_Krylov ~ 60
 forallforall (i = 0; i < (i = 0; i < n_Preconn_Precon ; i++) { ; i++) {

 solve subdomain problems concurrently solve subdomain problems concurrently
 } // End of loop over subdomains} // End of loop over subdomains
 perform Jacobian-vector productperform Jacobian-vector product
 enforce Krylov basis conditionsenforce Krylov basis conditions
 update optimal coefficientsupdate optimal coefficients
 check linear convergencecheck linear convergence
 } // End of linear solver } // End of linear solver
 perform DAXPY update perform DAXPY update
 check nonlinear convergencecheck nonlinear convergence
 } // End of nonlinear loop } // End of nonlinear loop
} // End of time-step loop} // End of time-step loop

65

Jazz LCRC

Primary PDE Solution KernelsPrimary PDE Solution Kernels
 Vertex-based loopsVertex-based loops

 state vector and auxiliary vector updatesstate vector and auxiliary vector updates
 Edge-based Edge-based ““stencil opstencil op”” loops loops

 residual evaluationresidual evaluation
 approximate Jacobian evaluationapproximate Jacobian evaluation
 Jacobian-vector product (often replaced with matrix-free form,Jacobian-vector product (often replaced with matrix-free form,

involving residual evaluation)involving residual evaluation)
 Sparse, narrow-band recurrencesSparse, narrow-band recurrences

 approximate factorization and back substitutionapproximate factorization and back substitution
 Vector inner products and normsVector inner products and norms

 orthogonalizationorthogonalization/conjugation/conjugation
 convergence progress and stability checksconvergence progress and stability checks

66

Jazz LCRC

Algorithmic Tuning for NKSAlgorithmic Tuning for NKS
SolverSolver

 Continuation parametersContinuation parameters: discretization order, initial: discretization order, initial
timesteptimestep, , timesteptimestep evolution evolution

 Newton parametersNewton parameters: convergence tolerance,: convergence tolerance,
globalization strategy, Jacobian refresh frequencyglobalization strategy, Jacobian refresh frequency

 KrylovKrylov parameters parameters: convergence tolerance, subspace: convergence tolerance, subspace
dimension, restart number, dimension, restart number, orthogonalizationorthogonalization
mechanismmechanism

 Schwarz parametersSchwarz parameters: : subdomainsubdomain number, number, subdomainsubdomain
solver, solver, subdomainsubdomain overlap, coarse grid usage overlap, coarse grid usage

 SubproblemSubproblem parameters parameters: fill level, number of sweeps: fill level, number of sweeps

67

Jazz LCRC

Sequential Performance ofSequential Performance of
PETSc-FUN3DPETSc-FUN3D

0

1000

2000

3000

4000

5000

6000

Jazz TerGrid IBM BlueGene

Peak Mflops/s Stream Triad Mflops/s Observed Mflops/s

68

Jazz LCRC

Parallel Performance of PETSc-FUN3DParallel Performance of PETSc-FUN3D
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 CacheTeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache
 BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 CacheSystem X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache

69

Jazz LCRC

Parallel Performance of PETSc-FUN3DParallel Performance of PETSc-FUN3D
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 CacheTeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache
 BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 CacheSystem X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache

70

Jazz LCRC

BlueGene Per-ProcessorBlueGene Per-Processor
PerformancePerformance

 Insignificant loss in performance due to parallelism even forInsignificant loss in performance due to parallelism even for
strong scalingstrong scaling
 16% of peak on 128 processor vs. 14% on 2048 processors16% of peak on 128 processor vs. 14% on 2048 processors
 Machine mode changes from coprocessor to virtual nodeMachine mode changes from coprocessor to virtual node

 In the overall parallel performance, poor per-processor part isIn the overall parallel performance, poor per-processor part is
the real the real ““culpritculprit”” and not the scalability and not the scalability

100

150

200

250

300

350

400

450

500

128 256 512 1024 2048

71

Jazz LCRC

ConclusionsConclusions

72

Jazz LCRC

Designing Parallel ProgramsDesigning Parallel Programs
 Common theme Common theme –– think about the think about the ““globalglobal””

object, then see how MPI can help youobject, then see how MPI can help you
 Solve a bigger problemSolve a bigger problem
 Cut down the execution timeCut down the execution time

 Also specify the largest amount ofAlso specify the largest amount of
communication or I/O betweencommunication or I/O between
““synchronization pointssynchronization points””
 Computation to communication ratioComputation to communication ratio
 Collective and noncontiguous I/OCollective and noncontiguous I/O
 Point to point vs. RMAPoint to point vs. RMA

73

Jazz LCRC

MPIMPI
 MPI is a proven, effective, portable parallelMPI is a proven, effective, portable parallel

programming modelprogramming model
 MPI has succeeded becauseMPI has succeeded because

 rich featuresrich features
 control on data placement (critical for performance)control on data placement (critical for performance)
 complex programs are no harder than easy onescomplex programs are no harder than easy ones
 open process for defining MPI led to a solid designopen process for defining MPI led to a solid design

74

Jazz LCRC

PETSc LibraryPETSc Library

 PETSc provides scalable linear andPETSc provides scalable linear and
nonlinear solversnonlinear solvers
 convenient algorithmic experimentationconvenient algorithmic experimentation
 portable wherever MPI is availableportable wherever MPI is available
 used in a variety of application areasused in a variety of application areas

 From a performance standpoint, parallelFrom a performance standpoint, parallel
programming is programming is easyeasy but sequential but sequential
programming is programming is difficultdifficult!!

75

Jazz LCRC

AcknowledgementsAcknowledgements

 MPICH Team at MCS (Bill Gropp, RustyMPICH Team at MCS (Bill Gropp, Rusty
Lusk, and Rajeev Lusk, and Rajeev ThakurThakur in particular) in particular)

 PETSc Team and David KeyesPETSc Team and David Keyes
 LCRC Team (Susan LCRC Team (Susan CoghlanCoghlan, John, John

ValdevValdev, and Ray Bair), and Ray Bair)
 Computer time was provided by ANL forComputer time was provided by ANL for

Jazz, SDSC for TeraGrid, and VirginiaJazz, SDSC for TeraGrid, and Virginia
Tech for System XTech for System X

